- 73. Two long parallel wires, each carrying current I are separated from each other by a distance L. The magnitude of the force per unit length exerted by one wire on the other is given by
 - $({\bf A})~\frac{\mu_o I}{2\pi L^2}$
 - (B) $\frac{\mu_o I}{2\pi L}$
 - (c) $\frac{\mu_o I^2}{2\pi L}$
 - (D) $\frac{\mu_o I}{L}$
- 74. What is the polarization of the following set of waves

$$E_x = E_1 \cos(\omega t - kz)$$

$$E_y = E_2 \cos(\omega t - kz + \frac{\pi}{2})$$

- (A) plane polarized
- (B) circularly polarized
- (c) elliptically polarized
- (D) unpolarized
- 75. The average flux of the electromagnetic energy over a cycle for an electromagnetic wave with electric field $\vec{E} = \vec{E_o} \cos kx \cos \omega t$ is given by
 - (A) $E_o^2 \cos^2 kx$
 - $(\mathbf{B}) \ \tfrac{E_0^2}{2} \cos^2 kx$
 - (c) zero .
 - (1) $\frac{1}{2}\epsilon_o c E_o^2 \cos^2 kx$