- 68. The decay process $n \to p + e^- + \tilde{\nu}$ is
 - (A) pure Fermi type
 - (B) pure Gamow-Teller type
 - (c) both Fermi and Gamow-Teller types
 - (D) forbidden decay
- 69. The excited state of a nucleus with spin parity 3^+ decays to the state 1^+ through γ -transitions. The allowed multipole fields are
 - (A) E4, M3, E2
 - (B) M4, E3, M2
 - (c) E3, M2, E1
 - (D) M3, E2, M1
- 70. An isochronous cyclotron has a maximum radius of 0.3 m and a magnetic field at this radius of 1.6 T. The kinetic energy of a circulating proton at this radius will be
 - (A) 8 MeV
 - (B) 11 MeV
 - (C) 19 MeV
 - (D) 22 MeV
- 71. In case of electromagnetic wave propagation along the axis of a rectangular wave guide
 - (A) TE10 mode is dominant mode
 - (B) TM_{10} mode is dominant mode
 - (c) both TE_{10} and TM_{10} are dominant modes.
 - (D) Neither TE_{10} nor TM_{10} mode is a dominant mode.
- 72. If the conductivity σ of the plasma is defined by the wave equation

$$J = Nev = \sigma E_{\rm o} e^{-i\omega t}$$

what is the conductivity of the plasma?

- (A) Ne
- (B) $i\left(\frac{Ne^2}{m}\right)$
- (C) $i\left(\frac{Ne^2}{m\omega}\right)$
- (**D**) $\frac{Ne^2}{m}$