- 54. The acceptor density in a sample of Ge of energy gap 0.67 eV is 0.9×10^{21} m⁻³. The Fermi level in the sample at 300 K is
 - (A) 0.45 eV
 - (B) 4.5 eV
 - (c) 0.045 eV
 - (D) 9 eV
- 55. If the atoms vibrating in a lattice at finite temperature are considered to be a collection of N identical harmonic oscillators (Einstein Model) the heat capacity at constant volume for such a solid is given by
 - $(\cancel{A}) \ C_V = Nk_B x \frac{e^x}{e^x 1}$
 - $(\mathbf{B}) \ C_V = Nk_B x^2 \frac{e^x}{e^x 1}$
 - (c) $C_V = Nk_B x^2 \frac{e^x}{(e^x 1)^2}$
 - (**D**) $C_V = Nk_B x \frac{e^x}{(e^x 1)^2}$

where $x = \hbar \omega / k_B T$.

- 56. The eigenstates ψ of the Hamiltonian $\mathcal{H} = -\frac{\hbar^2}{2m}\nabla^2 + U(\mathbf{r})$, which describes the interaction of an electron with wave vector \mathbf{k} with the lattice through the potential $U(\mathbf{r} + \mathbf{R}) = U(\mathbf{r})$ for all Bravais lattice vectors \mathbf{R} , are given by
 - (A) $\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}$
 - (B) $\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$
 - (c) $\psi_{n\mathbf{k}}(\mathbf{r}) = A e^{i\mathbf{k}\cdot\mathbf{r}}$
 - (j) $\psi_{n\mathbf{k}}(\mathbf{r}) = A\sin(\mathbf{k}.\mathbf{r}) + B\cos(\mathbf{k}.\mathbf{r})$
- 57. If the dispersion relation for a monatomic chain of identical atoms, each of mass M, with interatomic spacing a, is $\omega = (2\alpha/M)^{1/2}(1-\cos Ka)$ where α is the force constant between nearest-neighbour atoms, the acoustic phonon mode has a frequency at the first Brillouin zone boundary given by
 - (A) $(\alpha/M)^{1/2}$
 - (B) $(2\alpha/M)^{1/2}$
 - (c) $(\alpha/2M)^{1/2}$
 - **(D)** $(4\alpha/M)^{1/2}$