- 45. If Z(N, V, T) is the partition function of a system with N indistinguishable particles and volume V at temperature T and Z(1, V, T) is the partition function of a system containing one particle in volume V at temperature T. Then, Z(N, V, T) is
 - (A) $[Z(1, V, T)]^N/N!$
 - (B) N[Z(1, V, T)]/N!
 - (c) $[Z(1, V, T)]^N$
 - (D) N[Z(1,V,T)]
- 46. The probability of finding a system in a state with N_r particles and energy E_s is

$$P_{r,s} = \exp(-\alpha N_r - \beta E_s)/Z(z, V, T)$$

If z and Z are fugacity and grand partition function, $\beta = 1/kT$ and $\alpha = -\mu/kT$, the probability that the system in grand canonical ensemble has exactly N particles is

- (A) $Z(N,V,T)/\mathbb{Z}(z,V,T)$
- (B) $z^N Z(N, V, T)/\mathbb{Z}(z, V, T)$
- (C) $zZ(N, V, T)/[N\mathbb{Z}(z, V, T)]$
- (**b**) $NzZ(N, V, T)/\mathbb{Z}(z, V, T)$
- 47. A system has a fixed number of particles N. Suppose the energy scale is shifted by an arbitrary constant η so that the single particle levels are shifted by η . The new and the old partition functions, \tilde{Z} and Z will be related as,
 - (A) $\tilde{Z} = Z$
 - (B) $\tilde{Z} = e^{-\beta N/\eta} Z$
 - (c) $\tilde{Z}=e^{-\beta\eta N}Z$
 - (**D**) $\tilde{Z} = \eta e^{-\beta N} Z$
- 48. If S represents entropy of a macrostate and Ω , the number of microstates in it, then
 - (A) S must be $> k \ln \Omega$
 - (B) S must be $> k/\ln \Omega$
 - (c) $S = k/\ln \Omega$
 - (D) $S = k \ln \Omega$

k is Boltzmann constant.