41. A simultaneous measurement of \vec{J}^2 and J_z is made on a system. A possible outcome of the measurement is

(A)
$$j = 3/2$$
, $m = 1/3$

(B)
$$j = 5/2$$
, $m = 0$

(c)
$$j = 1, m = -1/2$$

(D)
$$j = 2$$
, $m = -1$

42. For a particle inside a box with rigid walls at x = 0 and x = L, if the wave function is

$$u(x) = A\cos\frac{\pi x}{2L} + B\sin\frac{3\pi x}{2L} + C\sin\frac{5\pi x}{2L} + D\cos\frac{5\pi x}{2L}$$
,

the correct boundary condition is

(A)
$$A - B = 0$$
 and $C + D = 0$

(B)
$$A + C = 0$$
 and $B - D = 0$

(c)
$$A + D = 0$$
 and $B + C = 0$

(D)
$$A + B = 0$$
 and $C - D = 0$

43. A particle moves in one dimensional potential V(x) such that $\lim_{x\to -\infty}V(x)=V_o$ and $\lim_{x\to \infty}V(x)=2V_o$ where $V_o>0$ and if a bound state with energy E exists then it is expected that

(A)
$$E < 0$$

(B)
$$E < V_o$$

(C)
$$V_o < E < 2V_o$$

(D)
$$E > 2V_o$$

- 44. Consider a particle of mass m making simple harmonic oscillations in one-dimension. If the oscillator is in thermal equilibrium at temperature T with a reservoir, then its average total energy is
 - (A) kT
 - (B) 2kT
 - (**A**) 3kT
 - (D) kT/2