$$(\mathbf{A}) \ \frac{1}{2}M\left(\frac{d\vec{r}}{dt}\right)^2 + kr^2 + \frac{L^2}{2Mr^2}$$

(B)
$$\frac{1}{2}M\left(\frac{dr}{dt}\right)^2 + kr^2$$

(c)
$$\frac{1}{2}M\left(\frac{d\vec{r}}{dt}\right)^2 + kr^2$$

$$\textbf{(D)} \ \frac{1}{2}M\left(\frac{dr}{dt}\right)^2 + kr^2 + \frac{L^2}{2Mr^2}$$

38. A particle of mass m moves in a potential

$$V(r) = -V_o \left(\frac{3R}{r} + \frac{R^3}{r^3} \right) \quad , \quad V_o > 0$$

and has angular momentum 10 in $V_{\sigma}R^2$. The radius of a stable circular orbit will be given by

- (N) R/3
- (B) R/2
- (c) 2R
- (D) 3R
- 39. The state of a quantum system is represented by $|\psi\rangle=3|E_1\rangle+4i|E_2\rangle$, where $|E_1\rangle$ and $|E_2\rangle$ are eigenvectors of the Hamiltonian with eigenvalues E_1 and E_2 , respectively. The average value of energy is given by
 - (A) $3E_1 + 4E_2$
 - (B) $3E_1 + 4iE_2$
 - (c) $(9E_1 16E_2)/25$
 - (**p**) $(9E_1 + 16E_2)/25$
- 40. If the Hamiltonian of an oscillator in two-dimensions is

$$H = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{1}{2}(m\omega^2 x^2 + 4m\omega^2 y^2) ,$$

the second excited state of this system

- (A) has energy $2\hbar\omega$ and is non-degenerate
- (B) has energy $2\hbar\omega$ and has degeneracy 2
- (2) has energy $3\hbar\omega$ and has degeneracy 2
- (D) has energy $3\hbar\omega$ and has degeneracy 3