30. The functions given by

$$f(x) = \begin{cases} ax + 1, & x \le \pi/2\\ \sin x + b, & x > \pi/2 \end{cases}$$

is continuous if

- (A) $a = \sin b$
- $(\mathbf{B}) \ a = \frac{\pi b}{2}$
- (c) $b = \frac{\pi a}{2}$
- (D) $b = \sin a$
- 31. Consider the differential equation $y' = y \cot(x) + \sin(x)$. The corresponding homogeneous linear equation has a general solution
 - (A) $y = \cos(Cx)$
 - $(\mathbf{B}) \ y = \sin(Cx)$
 - (c) $y = C\cos(x)$
 - (D) $y = C\sin(x)$

where C is integration constant.

- 32. The method of substitution for a first order linear differential equation y' = P(x)y + Q(x) constitutes in writing the general solution as product of two functions, i.e., y(x) = u(x)v(x,C), where C is the integration constant. For the equation $\frac{dx}{dy} = \frac{2x}{y} + \frac{3}{y^2}$, the solutions for u and v can be written as
 - (A) $u = y^2, v = C \frac{1}{v^2}$
 - (B) $u = y^2, v = C \frac{1}{v^3}$
 - (c) $u = -\frac{1}{y^2}, v = y^2 + y + C$
 - **(D)** $u = -\frac{1}{v^2 + C}, v = y^2 + y$
- 33. The vectors $(\xi, 1, 0), (1, \xi, 1)$ and $(0, 1, \xi)$ in \mathbb{R}^3 are linearly dependent when the scalar ξ is
 - (A) 0
 - $(B) \pm 1$
 - (c) $\pm\sqrt{2}$
 - $(\mathfrak{D}) \pm \sqrt{3}$