- 62. An electron in the ground state of the hydrogen atom is pulled apart by absorption of a 70 nm photon. The kinetic energy of the ejected electron will be about - (A), 3.6 eV. - (B) 2.8 eV. - (C) 4.2 eV. - (D) 5.3 eV. - 63. Which of the following fields <u>cannot</u> be associated with the electric field produced by some electrostatic charge distribution - (A) $F_x = 2yz(1 6xyz)$, $F_y = 2xz(1 6xyz)$, $F_z = 2xy(1 6xyz)$. - (B) $F_x = y^2 + z^2 + 2(xy + yz + zx)$, $F_y = z^2 + x^2 + 2(xy + yz + zx)$, $F_z = x^2 + y^2 + 2(xy + y + zx)$. - (c) $F_x = 2x^2yz$, $F_y = 2xy^2z$, $F_z = 2xyz^2$. - (D) $F_x = x/(x^2+y^2+z^2)$, $F_y = y/(x^2+y^2+z^2)$, $F_z = z/(x^2+y^2+z^2)$. - 64. Assuming one free electron per atom to contribute to current through a copper wire, the number of charge carriers per cubic meter of copper (atomic weight=63.5 g/mol, density=8.92 g/cc) - (A) 2.8×10^{22} . - (B) 6.2×10^{24} . - (C) 8.5×10^{28} . - (D) 4.8×10^{23} . - 65. If $y_1 = a \sin(\omega t kx)$ and $y_2 = a \sin(kx \omega t)$ then - (A) both y_1 and y_2 describe harmonic waves travelling in the positivex-direction. - (a) both y_1 and y_2 describe harmonic waves travelling in the negative x-direction - (c) while y_1 describes a harmonic wave travelling in the positive x-direction, y_2 describes that travelling in the negative x-direction - (D) while y_1 describes a harmonic wave travelling in the negative x-direction, y_2 describes that travelling in the positive x-direction.