- 58. If air is blown at the mouth of a tube of length 30 cm and diameter 2 cm, closed at one end, the frequency of the second harmonic will be
 - (A) 330 Hz
 - (B) 475 Hz
 - (C) 825 Hz
 - (D) 600 Hz
- 59. For a plane electromagnetic wave propagating in free space, which of the following relations between E and B, the electric and magnetic fields at a given point in space, and the unit vector $\hat{\mathbf{k}}$ in the direction of propagation, is <u>not</u> correct
 - (A) $\mathbf{B} = \frac{1}{c} \hat{\mathbf{k}} \times \mathbf{E}$.
 - (B) $\mathbf{E} = \frac{1}{c} \mathbf{B} \times \hat{\mathbf{k}}$.
 - (C) $\mathbf{E} = c \mathbf{B} \times \hat{\mathbf{k}}$.
 - (D) $\hat{\mathbf{k}} \cdot \mathbf{B} = 0$.
- 60. If a positive ion of with charge four times that of an electron (+4e) enters a uniform magnetic field **B** with a velocity $3 \times 10^5 \text{m/s}$, normal to the field and experiences a force of $3.84 \times 10^{-13} \text{N}$, then the strength B of the magnetic field is
 - (A) 2.0 T.
 - (B) 2.8 T.
 - (C) 4.2 T.
 - (D) 5.5 T.
- 61. The drift velocity of electrons constituting a current of 5 Amperes through a metallic wire of 3 sq.mm cross-section is close to (assume 10²³ electrons per cc in the metal)
 - (A) 500μ m/s.
 - (B) $50\mu \text{ m/s}$.
 - (C) $350 \mu \text{ m/s}$.
 - (D) $100\mu \text{ m/s}$.