- 5. A satellite of mass M, launched into a circular orbit of radius R, has a time period T. If a second satellite of mass 0.75M is launched into an orbit of radius $\frac{4}{3}R$, the time period of the second satellite will be given by
 - (A) T.
 - (B) 0.65T.
 - (C) 0.75T.
 - (D) 1.54T.
- 6. The force acting on a particle in one dimension is $F = -\alpha x 2\beta x^3$. The corresponding potential energy V(x), assuming V(0) = 0 is given by
 - (A) $V(x) = \alpha x^2 2\beta x^4.$
 - (B) $V(x) = \frac{1}{2}\alpha x^2 + \frac{1}{2}\beta x^4$.
 - (C) $V(x) = \alpha x^2 + 2\beta x^4.$
 - (D) $V(x) = -\frac{1}{2}\alpha x^2 \frac{1}{2}\beta x^4$.
- 7. A block of mass M rests on a horizontal table and is connected to two fixed posts by springs having spring constants k and 2k. If the block is displaced from its equilibrium position, the angular frequency of vibrations is given by
 - (A) $\sqrt{3k/M}$.
 - (B) $\sqrt{k/M}$.
 - (C) $\sqrt{k/3M}$.
 - (D) $\sqrt{3k/2M}$.

- 8. Sound waves do not exhibit
 - (A) interference.
 - (B) diffraction.
 - (C) refraction.
 - (D) polarisation